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Abstract. The adsorption transition in the phase diagram of a self-interacting lattice polygon
is examined. The polygon has a nearest-neighbour contact fugacity and the interaction between
the polygon and an impenetrable wall is modelled by a visit fugacity which is conjugate to the
number of vertices of the polygon incident with the wall. The partition function of this model

is ZF(v,2) = X, . pif (v, 0)y'z%, where pf (v, ¢) is the number of polygons with nearest-
neighbour contactsy visits to the wall, and: edges (and counted up to translations parallel

to the wall). The limiting free energy of this model ¥ (y,2) = liM,—o 2 l0gZ} (v, 2),

and it is known to be a non-analytic function offor eachz < co. The non-analyticity is at

y = yX(z), and this corresponds to an adsorption transition of the polygon on the wall. In this
paper it is proved that.(z) > 1 for all z € (0, c0).

1. Introduction

Linear polymers in dilute solution in a good solvent undergé-tansition if the quality

of the solvent (which may be a function of temperature, or of other factors) deteriorates
beyond a critical value. This transition is brought about by an internal rearrangement of
monomers, which occurs when the effective attractive forces between monomers overcomes
the entropic repulsions due to excluded volume. The result is a collapse to a phase of
compact conformations. The collapse transition andgtip®int have been studied at least
since the 1960s, and remain the focus of much attention, see for example Mazur and
McCrackin (1968), Finsyet al (1975), Saleur (1985), Privman (1986), Meirovitch and
Lim (1989) and Tesiet al (1996). Linear polymers can also be adsorbed onto a wall.
This adsorption occurs when the entropic repulsive force between the polymer and the
wall is overcome by an attractive interaction between the monomers in the polymer, and
molecules in the wall. The result is a phase transition which occurs at a critical value of
the interaction of the polymer with the wall. The scaling theory of the adsorption transition
has been reviewed by De’'Bell and Lookman (1993).

The self-avoiding walk is a good model of a linear polymer in dilute solution (Flory
1949). This model was used as a model for an adsorbing and collapsing polymer by Vrbov
and Whittington (1996) (see also Whittington 1998). An unfortunate problem in this model
is that it is not known that the limiting free energy exists for attractive interactions between
monomers (Teset al 1996, Vrboa and Whittington 1996). This is rather unsatisfactory,
and | will confine the discussion in this paper to polygons (closed, self-avoiding cycles in
the lattice which may be used as a model of ring polymers), where it is known that there is
a limiting free energy (Teset al 1996a). | aim to extend some of the results obtained by
Vrbova and Whittington (1996) in this paper. In particular, | shall show that the adsorption
of a self-interacting polygon occurs at a strictly positive value of the attractive interaction
between the self-interacting polygon and the wall.
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I will work in the d-dimensional hypercubic lattice with coordinatesy, ..., z}, where
the z-coordinate will always correspond to th&h coordinate. The adsorption will be
modelled by an interaction between the polygon and the hyperplage O (it is still
possible for the polygon to penetrate this hyperplane). Since the model demands that the
polygon is in the vicinity of the hyperplane, | shall only consider conformations of polygons
which have at least one vertex withzecoordinate equal to zero. Such polygons are called
attached polygons Two attached polygons are equivalent if we can translate one onto the
other by a translation which leaves aicoordinates unchanged (we say that the translation
is parallel to thez = 0 hyperplane).

A vertex in a polygon withz-coordinate equal to zero is\asit, and two vertices in a
polygon which are adjacent in the lattice, but not in the polygon, forrorgact Contacts
may also occur between two visits, or between a visit and any other vertex in the polygon.
Let p,(v, ¢) be the number of distinct attached polygons witkisits andc contacts. The
partition function in this model is given by

Zy(y,2) =Y pa(v, 0)y'2f (1.1

wherey is thevisit fugacityandz is thecontact fugacity It is known that there is a limiting
free energy

1
F(y,2) = ,,'Lmoo - log Z,(y, 2) (1.2)

for all values 0< y < o0 and 0< z < oo (Vrbova and Whittington 1998b). Since the
polygon can penetrate the plape= 0, this is a model of a self-interacting ring polymer
which adsorbs onto an interface between two solvents. We call the hyperplané a
defect plane A related model makes the hyperplane- 0 impenetrable to the polygon. A
positive polygoris a polygon with vertices with aj-coordinates non-negative. We indicate
the number of positive attached polygons withvisits andc contacts byp; (v, c). The
partition function in this model is

ZFv. =) prw oy (1.3)
and the limiting free energy

1
Fry.2) = im ~logZ;(y,2) (1.4)

is also known to exist for all valuesQ y < oo and 0< z < oo (Vrbova and Whittington
1996). The hyperplang= 0 is called awall in this model. We will be primarily interested

in the model of positive polygons. However, the relation between these models is the
key to proving that the adsorption of positive polygons occurs at a positive value of the
visit-fugacity y, for any value ofz € (0, c0).

The phase diagram of positive polygons was investigated by V&lamd Whittington
(1996), and its generally accepted appearance is presented in figure 1. In three dimensions
we expect that there will be four phases. At small values of the fugagitse®lz we should
have desorbed-expanded (DE) polygons. Increasistypuld lead to an adsorbed—expanded
phase (AE), while increasing instead is expected to lead to a desorbed—collapsed (DC)
phase. Increasing both and z will presumably give an adsorbed—collapsed (AC) phase,
although it seems that such a phase is absent in two dimensions (Foster 1990, Foster
and Yeomans 1991, Fostet al 1992). The phase boundary separating the desorbed and

1 These definitions are slightly different from those in Vriand Whittington (1996). However, it is not difficult
to see that only minor modifications of the methods in that paper will lead to identical results.
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Figure 1. The phase diagram for adsorbing and collapsing attached
Yy positive polygons in more than two dimensions.

adsorbed phases of positive polygons will be indicatedyfyyz), and will enjoy some
attention in this paper. In the next section | shall review some of the known results about
this phase diagram. My aim is to add to these; | shall prove that the phase boundary
between the desorbed and adsorbed phases is strictly bigger than 1 for all values of the
contact-fugacityz € (0,00): yf(z) > 1if z € (0,00). The proof of this result is not
simple, and relies on the ideas developed in the study of adsorbing walks by Hammersley
et al (1982).

2. Collapsing and adsorbing polygons

The existence of limiting free energies in the models of self-interacting positive polygons
interacting with a wall, and of self-interacting polygons interacting with a defect plane
was shown by Vrbo& and Whittington (1996). These free energies are convex in both
their arguments, and are continuous fokQ < co and O< z < oo, and monotonic non-
decreasing in both arguments. From the convexity it also follows that they are differentiable
almost everywhere. It is also known that

FOy,2)=F (y,2) =F (1, 2) VO<y<1 Vz<oo. (2.1)
Thus, F(y, z) and F*(y, z) are constant functions of if 0 < y < 1. Evidently,
Fl2)=Ft1,2) =F) (2.2)

is the limiting free energy of a model of self-interacting polygons which has a crilical
point atz = z.. If both of the fugacities are equal to 1, then we obtain the free energy
of uniformly sampled polygons, which equals the logarithm of the growth constant (this is
also called theconnective constamf the lattice):

where u, is the growth constant of polygons in tlhledimensional hypercubic lattice (the
presence of the wall for positive polygons does not change the valug)of

The adsorption transition manifests itself as non-analyticitie® (g, z) and F*(y, z).
These free energies are non-analytic functiony &6r each finite value of (Vrbova and
Whittington 1996, 1998b). As proposed in figure 1, one would expect there to be a critical
curve y(z) of non-analyticities in the phase diagram, such t#dt(y, z) is a constant

T Note thatp;” < p,. Moreover, by translating a polygon so that it becomes a positive attached polygon, note
that p, < np;. Thus, lim,—.« 2 log p;f = liM,—o L log p, = log 1.
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function of y if y < y(z), and thatF*(y, z) is not constant ify > y*(z). We define this
critical value by

yE (@) = supylF (v, 2) = F(2)}. (2.49)
y
The critical curvey.(z) in the model of a polygon adsorbing on a defect plane is similarly

defined. An important result is that both(z) and yf(z) are finite for each finite value of
z. The following bound was shown by Vrbawand Whittington (1996):

1<y@ <y @<t ifrzt (2.5)
Ma-1
The same techniques also show that
1< y:.(2) <yf@) < if z <1 (2.6)
Hd-1

These bounds justify the hypothetical shape given to the desorbed—adsorbed phase boundary
in figure 1.

There are also (in a limited sense) some results on the expanded-collapse phase boundary
of #-transitions. It is not known thafF*(y, z) or F(y, z) are non-analytic functions of
for fixed values ofy. On the other hand, if we assume that there is a phase boundary of
g-transitions separating the DE-phase from the DC-phase=at;" (y), thenzf (y) =z is
a constant function of, for all y < y(z}) (provided thaty!(z) is continuous at = z.);
this follows from equations (2.1) and (2.2). Therefore, if there is a collapse transition in the
model, then the phase boundary separating the DE-phase from the DC-phase is a straight
line (as in figure 1). Little is known about the collapse of adsorbed polygons; the phase
boundary in figure 1 is conjecture (and there is strong evidence that it is not present in the
two-dimensional version of this problem (see Fosteal 1992)). The presence of the phase
boundary in three dimensions is strongly supported by numerical simulations of collapsing
walks interacting with a wall (Vrba¥ and Whittington 1998a, b).

In this paper we will focus on the use of density functions to prove more results about
figure 1. These are the Legendre transforms of the free energies defined in equations (1.2)
and (1.4). In the case of positive polygons the density functions of visits is defined by

logP*(e; ) = . inf {FT(y,z) —elogy} 2.7
<y<oo
Fr(y,z) = sup{logP*(e;z) + € logy}. (2.8)
O<e<1

It can be shown that
1/n
Pr(e; z) = lim [Zp,f(LenJ, c)zci| (2.9)

see for example Hammersley al (1982), Ellis (1985), Madrast al (1988), Vanderzande
(1995). Moreover, since each polygon may have at mesits, ¢ € [0, 1], and logP™ (¢; 2)

is concave ire. On the other hand, the concatenation of polygons (Vabavd Whittington
1996) interacting with a surface shows thRit (¢; z) is convex inz. Therefore,P* (e; z)

is a continuous function for € (0, co) and fore € (0, 1). The density function may have
discontinuities on the boundary of this interval; but such discontinuities do not play a role in
the thermodynamic properties of the model, except at zero or infinite values of the fugacities
(this follows from equation (2.4)). We do not know if there are any such discontinuities,
but we remove any which may exist by redefining the value of the density function there
by the right limit

+0- I H + .
PO, Z)_l'Q”oP (€ 2). (2.10)
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By concavity,P*(¢; z) has a right derivative everywhere (@, 1), and by defining the value

of the density function at = 0 as in equation (2.10), there is also a right derivative at
¢ = 0. The density function of attached polygons interacting with a defect pface,z),

is defined similarly toP*(¢; z), and it has the same properties. There is an important
connection between this right derivative and the critical curyé).

Lemma 2.1For everyz € (0, c0),

+
logy/(z) = — [d—

+(, .
& logP (e,z)i|

e=0

where% indicates the right derivative to, and where we evaluate this derivativecat 0.

Proof. Let Q(¢) = logP*(e; z) + elogy. By equation (2.4),Ft(y,z) = sup Q(e).
Moreover, Q(¢) is concave, and its right derivative at= 0 is

dt+ d+
I:—Q(e)i| = |:— log Pt (e; Z)] +logy.
de 0 de

e=0

Iflogy < —[% logP*(¢; z)]e=0, then Q(¢) has a negative right derivative at= 0, and
is strictly decreasing in [Ql] since it is concave. Thus, the supremum in equation (2.4)
is found whene = 0, in which caseF*(y, z) = logP*(0; z) = F(z) by equations (2.2)
and (2.9). If, on the other hand, lgg> —[% logP* (€; 2)]e—o, then the right derivative is
greater than zero at= 0. Since this derivative exists as a limit, there issan- 0 such that
Q(e) > Q(0) for all € € [0, €.). Thus, the supremum i@ (¢) is at somee; > 0, in which
caseF*(y,z) = logP*(e1;z) + e1logy > logP*(0; z) = F(z). Since we can choose
log y arbitrarily close to—[% logP* (€; z)]e=o0, this shows that there is a non-analyticity in
FH(y,2) at =[5 10g P (e; 2)]e=o.

Notice thate is the density of visits in the class of polygons which determines the free
energy, and is therefore also the expected value of the density of visijis< If (z), then
the supremum is realized at= 0, and the expected density of visits is zeroy It y/(z),
then the supremum is found at a positive value p$o that the free energy is determined
by a class of polygons which has a positive expected density of visits. |

This lemma has an important corollary.

Corollary 2.2. For everyz € (0, 00),
I |
log y;f (z) — logy.(z) = &7 lim =(P(e:2) = P*(€: ).
Proof. Lemma 2.1 is also true if we consider(z) andP(e; z). The result now follows

immediately from lemma 2.1, equation (2.2) and the definition of the right derivativé.

This relation between the locations of the critical curves and the density functions in
these models will be exploited in the next section to prove gfiat) > 1 for all z € (0, c0).
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Figure 2. A grid of non-adjacent edges in two dimensions. All of these edges point in the same
direction, and if the intersection of a family of parallel edges is taken with a translate of this

pattern, then there is an intersection which will contain at least a quarter of all the edges in the
family. In one dimension the pattern reduces to every fourth edge along a lidediimensions

the pattern is found by recursively stacking copies (translated by two steps horizontally) of the
pattern in(d — 1) dimensions.

3. The location of yf(z)

In this section | prove thagt(z) > 1 for all 0 < z < co. This will be done by examining
the relation between the critical curves and the density functions in corollary 2.2: since
F(z) is finite, we only have to show that limo(P(e; z) — P (e; 2)) /e > 0.

Consider any positive polygon with edges,v visits andc contacts, and with a visit
a to the hyperplane = 0. Sincea is incident with two edges in the polygon, and there
is only one direction out of the hyperplanejs incident with an edge with both endpoints
in the hyperplane = 0. In other words, for every two visits, there is at least one edge of
the polygon in the hyperplane= 0. Thus, any polygon counted kyy' (v, ¢) must have
at least|v/2]| edges in the hyperplane= 0. LetV be the set of edges in the polygon
which are also in the hyperplane= 0. Then|V| > |v/2]. Each edge inV points in
one of (d — 1) possible directions (since the hyperplane- 0 is a (d — 1)-dimensional
space), and so there must be at least one direction which contains aVlg&gt— 1) edges.
Without loss of generality let this be thedirection, and let this set of edges bg. Then
Wl > [lv/2]/d — D).

The aim is to select a subset of non-adjacent edges from thage it the hyperplane
z = 0 is one dimensional, then it can be done as follows. Rgte the (infinite) set of
edges{..., (-4, -3),(0,1), (4,5), ...} in one dimension. Defin®; by addingi to each
coordinate inRy. Then ther; are disjoint ifi =0, 1,2, 3 andRy U R; U R, U R3 contains
all the edges in the hyperplane= 0. Thus, there is anhsuch thatV N R; contains at least
one out of every four edges . These edges are non-adjacent, and we have selected at
least|||v/2]/(d — 1)] /4] of them.

In higher dimensions we define thie recursively. Suppose that we have defined them
in (d — 1) dimensions. LetRfZ) be a copy ofR; inserted in the firstd — 1) coordinates
in a d-dimensional space, and with the last coordinate put equal tdhen we define
Ro@d) =...,RS?URPURP URP URP U.... In other words, we stack copies of
Ro and R, in an alternating fashion in the-direction (all edges point in the-direction)
to find Rp in d dimensions. The outcome in two dimensions is illustrated in figur®,2.
is again defined by addingto all x-coordinates inRy. Then Ry U R; U R, U R3 contains
all edges in thex-direction in the hyperplane = 0, and so there is an such thatgR;
contains at least one quarter of the edges)in In other words, we can pick a set of at
least|||v/2]/(d — 1)] /4] non-adjacent edges in the hyperplane 0.

Selectn of the | | [v/2]/(d —1)] /4] non-adjacent edges in the hyperplane 0. These
edges will be changed to turn the positive polygon into an attached polygon; this will relate
the density functions in corollary 2.2 to one another. Translate each of:thdges one
step in the negative-direction, and add two edges at their endpoints each to reconnect the
polygon. The removal of each edge creates one more contact, but no other contacts are
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Figure 3. We change the positive attached polygon into an attached polygon by translating
edges in the adsorbing plane in the-direction. This creates a new contact for each edge
translated, but the number of visits remains unchanged.

formed since none of the edges are adjacent to one another. The outcome is an attached
polygon withn + 2m edges, and + m contacts (this is illustrated in figure 3). This shows
that
v/2]/d —-1)]/4
(LLL / J/m I J)Pi(v,c)épmzm(v,wrm) (3.1)

since, for each choice of the positive polygon, and for each choioce efiges, we will
obtain a different attached polygon as the outcome. Multiply equation (3.1 Bpd sum
over ¢, and note thad ", p,iom(v, c + m)z¢ < 27" Y, ppion(v, ©)z¢. This changes the
inequality to a relation between the partition functions in equations (1.1) and (1.3):

(LLLU/ZJ/(’;Z B 1)J/4J>Z;r(v; 2) < 27" Zysom (3 2). (3.2)

A consequence of this relation is the following theorem.

Theorem 3.1For all 0< z <
14 e ZF@)e/®1-8) pc. oy <« p .
1+z ) PT(e; 2) 152 Z

wheres = ze" % @e/((8d — 8)(1+ z& 7).

Proof. Let v = |en] in equation (3.2), and let = | én], wheres < ¢/(8d — 8). Take the
(1/n)th power of the equation, and let— oc. Then by equation (2.9)

(€/(8d — 8))/ &9 ) . 1425
8%(e/(8d — 8) — §)</(61-8)=b Pre) <z [7’ (m; z)] A

Let Z,(v; z) be the partition function of a model of attached polygons witlvisits,
and contact fugacityz. Then Z,(z) = ), Z,(v,z) is the partition function of a
model of polygons with contact fugacity, and it has a limiting free energy given by
F(z) =lim,_ % log} ", Z,(v; z). On the other hand, let, be that least value af which
maximizesZ, (v; z). Definee, = liminf,_ ., (v./n), then the inequalities

Zy(0::2) € Y Zn(0;2) < nZy(04; 2)
v

gives P(e,; z) = €@, But P(e,; z) = sup P(e; z), so that
Ple;z) < €@ (B)
Substitution of this, and rearrangements of the factors in equation (A) gives

(E/(Sd _ 8))6/(8d—8)zée—28f(z) L e
[ 89(e/(8d — 8) — §)</(@d-8- }7’ (&2 <P (1+ 25’2) :
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The factor in square brackets is maximum when
Ze—Z}-(Z)e
(84 —8)(1+ 2% W)
in which case we obtain
1+ 76 @) /@-Bpt. .y < p .
A+z ) (e52) 1525 °
with § as given above. O

1)

If we combine theorem 3.1 with corollary 2.2, we find corollary 3.2.
Corollary 3.2.

log(1 + z&~ /@),

logy. (z) —logy.(z) > !
84 —8

Proof. From corollary 2.2 and theorem 3.1 we obtain

logy. (z) — log y.(z) = '@ y@O %(P(e; 2) — Pte;2)

.1 Plz: 2)
>lm=-(1- 12" 14 o6 —e/(8d—8)>‘ c
e\OG( P(e; z) (d+z ) ©

Suppose thaP’(0; z) < 0. If € is close to zero, then
PO;2) +e(L—nP'(0;2) = Ple;2) = P0;2) +e(L+nP'(0; 2)
wheren > 0 can be made arbitrarily small if = 0. Lete < —P(0; z)/(2(1 + n)P’'(0; 2)),
then these inequalities can be used to show that
P(rZ:2) 25 P'(0; z) )
—2 T L1- 2
Pe:2) ¢ <1+25 ) PO €

where

P'(0;2)\?
P(O; z2) )
is a finite and fixed positive number. It is now important to note that ze % e for
fixed values ofz. By using this bound o#d, the above simplifies to

Pz 2) <1-2n¢ P'(0; 2)

P(e; 2) P@©; 2)

wheren; = n1 — 22e7 7 @P'(0; z)/P(0; z). Substitition of this bound into equation (C)
gives

n= (1+2(1+77)2)<

+ 77262

1 _ P'(0; 2)

I () —logy.(z) > log(1 2@y yoop——

09y, (2) —109yc(z) = g2 log(l+ze =) + "0 2)
and sinces = 0, we can takey arbitrarily small. I1fP’(0, z) = 0 then useP(0, z) — en <
P(e, 2) < P(0, 2) + en instead. 0

Notice thatZ,(z) = Y, pa(c)z° < dnp,z®™ if z > 1. ThusF(z) < logus + dlogz
if z > 1. Otherwise, ifz < 1, thenZ,(z) < dnp, and F(z) < logu,. Therefore,
e 7@ > 17%¢(z), where(z) = min{1, z~2/}. This gives the bound

1
l0g v (2) = 109 ye(2) > 5= 100(1 + 2% (2)). (3.3)

In three dimensions, and if = 1, this gives the approximate lower bound lggz) >
75 109(1 + 11;%) ~ 0.0028.
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4. Excursions in polygons with a density of visits

A subwalk with its first and last vertex in the hyperplane= 0, and with all its internal
vertices disjoint with this hyperplane, is @xcursion Maximal subwalks in a polygon
which are contained in the hyperplane= 0 are calledncursions An attached polygon is
an alternating sequence of incursions and excursion. If the polygon is completely adsorbed
in the wall (defect plane), then it has no excursions.

In this section we use a construction on excursions in adsorbing walks to produce an
alternative proof thatr (z) > 0. The density of visitgv), /n is given by the first derivative
of the free energy with respect to the visit-fugacity; in the desorbed phase we can calculate
directly that

lim W _ if*(y, 2)=0 if y <y*(2) 4.1)
n—oo n dy
and since the number of excursions is at most equal to the number of visits, the density
of excursions is also zero. We can also see this by noting that the density function
Pt(e; z)+€logy attains its supremum at= 0 if y < yI(z) (see the proof of lemma 2.1),
so that the density of visits is zero in the infinitdimit. On the other hand, if > y/(z),
then there is a non-zero density of visits, and perhaps a non-zero density of excursions. We
will examine this in the following paragraphs.

Let p;f (v, c, k) be the number of attached, positive polygons witledges,v visits,
¢ contacts and excursions. We can define the partition function of a model of positive
polygons with|en | visits and|dn| excursions by

Z(lenls z; [8n)) = ) pl(len],c, [8n])z". (4.2)
The density function of visits and excursions of this model is defined by
Pt (e; z; 8) = limsu Z, (Len]; z; 16n)]Y" (4.3)

we only define this as a lim sup, but note that the existence of the limit can be shown. Since
pi(v,c) =), pi(v,c k), we necessarily have that

PT(e;2) = supP ™ (e; z; §). (4.4)
§
It can be checked that the domain ef ) is as follows
eel0, 3] 0<s<min{e/2, % —¢} ind=2 4.5)
€ c[0,1] 0< 8 <minfe/2, (1 —¢)/2} ind > 3. '

Let p be a polygon counted by, (v, ¢, k). Since there are visits andk excursions inp,
there are als@ — k edges ofp in the planez = 0. Choosen non-adjacent edges from
this set; this can be done in at legst /%) different ways. Fix these edges in the= 0
hyperplane, and translate the rest of the polygon one step ip-tlirection to obtain the
polygon p’. This is illustrated in figure 4.

No contacts are broken by this construction, but each ofithehosen edges produces
a contact, and each new vertex may have as many msw contacts; thusy’ may have
at leastc, and at mostc + (24 + 1)m contacts. In addition, there aren2visits andm
excursions inp’. Thus

_ (2d+L)ym
(L(v mk)/ZJ)p,T(v,c,k)g ; Pt oo (@, C + i m). (4.6)
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Figure 4. By fixing edges in the = 0 hyperplane and translating the rest of the polygon in the
z-direction, we can create excursions.

Multiply this equation byz¢ and sum overc. This gives a relation between partition
functions:

L(v — k)/2] R
( m / )Zi(v: z k) < [ 2(; 2 o (2ms 2 m). 4.7)
Equation (4.7) has the following consequence.
Theorem 4.1For everye in the interval(0, 1] there exists &, > 0 such that

L+ [p @ OTH 2P (e; 2 y) < PH28.: 23 8.)
where O< z < 00, 28, < € — y, and¢ (z) = max(1, z~+Dy,

Proof. Putv = |en|, k = |yn], m = |dn] in equation (4.7). Take the (&)th power, and
take the limsup as — oo of the left-hand side of the equation. This gives

(e —ypyene o (2 8 \]?
85((6—)/)/2—5)(6_)/)/2_573 €5y <[9E] |:P (1+28’Z’ 1+25)i|

whereg(z) = 1if z > 1 andg(z) = z~ %D if z < 1. By equation (4.4) and theorem (3.1),
equation (B), we note tha®*(25; z; 8) < P+(28;z) < €@, Thus

— (e-y)/2
55((6((i y)J;)Z/E)(S)(GV)/“ [¢ (@O PT(e; ) < PT (%; z ﬁ) :
The left-hand side is a maximum if
€E—Y
T 20+ ()
in which case we have
1+ [p (@I ™H 2P (e 23 y) < PH(25.: 2 8)

whered, = §/(1+ 28) and wheres is given above. This completes the proof. O

*

Notice thats, < ¢/2 in the proof above, so that the optimal valuesoh theorem 4.1 is
in the interval specified by equation (4.5). The implication of theorem 4.1 is that any set of
polygons with|en | visits and no excursions is exponentially rare in comparison with a set
of polygons with|25,n | visits and|8,n ] excursions (and wheres2= ¢/(1 + ¢ (z)e¥ @)).

From equation (2.4) we see that the free energy is defined by

FH(y,2) = suplog(P"(€; z; 8)y¢) = log(P T (*; z; 8%)y). (4.8)
€,8
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If y < yF(z), then we know from the proof of lemma 2.1 th&t= §* = 0 in equation (4.8).
We now use theorem 4.1 to give an alternative proof #fidt) > 1: Suppose that > y(z)
so thate* > 0 in equation (4.8). Then by theorem 4.1 we note

e*—28"
Fr(y,z) = log(P*(e*; z; 8")y¢) < log <P+(25T; z; 8h)y?' [yTD (4.9)

where we used theorem 4.1 and whe’d 2= (¢* — §*)/A < €* — §*; and where
A = (14 [¢ ()€ @]~ 1)€=9/2 py theorem 4.1. This is a contradiction if

log A

logy <

and if we suppose that* = ae*, where 0< « < % then simplification of equation (4.10)
gives

(11— )1+ ¢(2)e" ) log(1 + [¢(2)e" @]
< .
o + 2¢(2)eF©

logy (4.11)

This bound is positive for any value afin [0, %]. In other words, ify satisfies the bound

in equation (4.11), then equation (4.9) is a contradiction (by the definitiaAofy, z)),
unlesse* = 0. Thus, if y satisfies the bound in equation (4.11), then we must be in the
desorbed phase, and $p(z) > 1.

5. Conclusions

In this paper | revisited a model of adsorbing and collapsing polygons introduced bya/rbov
and Whittington (1996). This model is a generalized version of the model in Hammersley
et al (1982). In this paper it has been shown that the adsorption transition of positive
attached polygons can only occur when there is a strictly attractive interaction between the
polygons and the wall (that is, if the visit-fugacityis in [1, yf(z)), then we are in the
desorbed phase, ang (z) > 1 for all 0 < z < c0). A construction for adsorbing polygons
(without a contact-fugacity) in the paper by Hammersétyal (1982) shows that there is

a density of excursions in the adsorbed phase. In our phase diagram this corresponds to
a density of excursions foy > y(1) andz = 1. The construction in that paper will not
generalize to the model of interacting polygons in this paper (too many nearest-neighbour
contacts are lost) Thus, it remains to show that there is a density of excursions in the
adsorbed phases for valueszof 1. In addition, an easy extension of the construction will
show that a density of the excursions will be tight knots (Janse van Rensbal{d 992);

this result was also shown by Vanderzande (1995).

Monte Carlo simulations by Vrb@and Whittington (1998a, b) support the hypothetical
phase diagram in figure 1. There are also some outstanding issues. Most importantly, what
can be said about the AC-phase? Is it present in the two-dimensional version of this model?
Numerical work suggests that it is present in three dimensions; but this raises a second issue:
are there two triple points in the phase diagram (figure 1), or is there only one quadruple
point?

1 This construction will work for related models, such as for example a model of polygons with a curvature
fugacity.
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