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Abstract. The adsorption transition in the phase diagram of a self-interacting lattice polygon
is examined. The polygon has a nearest-neighbour contact fugacity and the interaction between
the polygon and an impenetrable wall is modelled by a visit fugacity which is conjugate to the
number of vertices of the polygon incident with the wall. The partition function of this model
is Z+n (y, z) =

∑
v,c p

+
n (v, c)y

vzc, wherep+n (v, c) is the number of polygons withc nearest-
neighbour contacts,v visits to the wall, andn edges (and counted up to translations parallel
to the wall). The limiting free energy of this model isF+(y, z) = limn→∞ 1

n
logZ+n (y, z),

and it is known to be a non-analytic function ofy for eachz < ∞. The non-analyticity is at
y = y+c (z), and this corresponds to an adsorption transition of the polygon on the wall. In this
paper it is proved thatyc(z) > 1 for all z ∈ (0,∞).

1. Introduction

Linear polymers in dilute solution in a good solvent undergo aθ -transition if the quality
of the solvent (which may be a function of temperature, or of other factors) deteriorates
beyond a critical value. This transition is brought about by an internal rearrangement of
monomers, which occurs when the effective attractive forces between monomers overcomes
the entropic repulsions due to excluded volume. The result is a collapse to a phase of
compact conformations. The collapse transition and theθ -point have been studied at least
since the 1960s, and remain the focus of much attention, see for example Mazur and
McCrackin (1968), Finsyet al (1975), Saleur (1985), Privman (1986), Meirovitch and
Lim (1989) and Tesiet al (1996). Linear polymers can also be adsorbed onto a wall.
This adsorption occurs when the entropic repulsive force between the polymer and the
wall is overcome by an attractive interaction between the monomers in the polymer, and
molecules in the wall. The result is a phase transition which occurs at a critical value of
the interaction of the polymer with the wall. The scaling theory of the adsorption transition
has been reviewed by De’Bell and Lookman (1993).

The self-avoiding walk is a good model of a linear polymer in dilute solution (Flory
1949). This model was used as a model for an adsorbing and collapsing polymer by Vrbová
and Whittington (1996) (see also Whittington 1998). An unfortunate problem in this model
is that it is not known that the limiting free energy exists for attractive interactions between
monomers (Tesiet al 1996, Vrbov́a and Whittington 1996). This is rather unsatisfactory,
and I will confine the discussion in this paper to polygons (closed, self-avoiding cycles in
the lattice which may be used as a model of ring polymers), where it is known that there is
a limiting free energy (Tesiet al 1996a). I aim to extend some of the results obtained by
Vrbová and Whittington (1996) in this paper. In particular, I shall show that the adsorption
of a self-interacting polygon occurs at a strictly positive value of the attractive interaction
between the self-interacting polygon and the wall.

0305-4470/98/418295+12$19.50c© 1998 IOP Publishing Ltd 8295
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I will work in the d-dimensional hypercubic lattice with coordinates{x, y, . . . , z}, where
the z-coordinate will always correspond to thedth coordinate. The adsorption will be
modelled by an interaction between the polygon and the hyperplanez = 0 (it is still
possible for the polygon to penetrate this hyperplane). Since the model demands that the
polygon is in the vicinity of the hyperplane, I shall only consider conformations of polygons
which have at least one vertex with az-coordinate equal to zero. Such polygons are called
attached polygons†. Two attached polygons are equivalent if we can translate one onto the
other by a translation which leaves allz-coordinates unchanged (we say that the translation
is parallel to thez = 0 hyperplane).

A vertex in a polygon withz-coordinate equal to zero is avisit, and two vertices in a
polygon which are adjacent in the lattice, but not in the polygon, form acontact. Contacts
may also occur between two visits, or between a visit and any other vertex in the polygon.
Let pn(v, c) be the number of distinct attached polygons withv visits andc contacts. The
partition function in this model is given by

Zn(y, z) =
∑
v,c

pn(v, c)y
vzc (1.1)

wherey is thevisit fugacityandz is thecontact fugacity. It is known that there is a limiting
free energy

F(y, z) = lim
n→∞

1

n
logZn(y, z) (1.2)

for all values 06 y < ∞ and 06 z < ∞ (Vrbová and Whittington 1998b). Since the
polygon can penetrate the planez = 0, this is a model of a self-interacting ring polymer
which adsorbs onto an interface between two solvents. We call the hyperplanez = 0 a
defect plane. A related model makes the hyperplanez = 0 impenetrable to the polygon. A
positive polygonis a polygon with vertices with allz-coordinates non-negative. We indicate
the number of positive attached polygons withv visits andc contacts byp+n (v, c). The
partition function in this model is

Z+n (y, z) =
∑
v,c

p+n (v, c)y
vzc (1.3)

and the limiting free energy

F+(y, z) = lim
n→∞

1

n
logZ+n (y, z) (1.4)

is also known to exist for all values 06 y <∞ and 06 z <∞ (Vrbová and Whittington
1996). The hyperplanez = 0 is called awall in this model. We will be primarily interested
in the model of positive polygons. However, the relation between these models is the
key to proving that the adsorption of positive polygons occurs at a positive value of the
visit-fugacity y, for any value ofz ∈ (0,∞).

The phase diagram of positive polygons was investigated by Vrbová and Whittington
(1996), and its generally accepted appearance is presented in figure 1. In three dimensions
we expect that there will be four phases. At small values of the fugacitiesy andz we should
have desorbed–expanded (DE) polygons. Increasingy should lead to an adsorbed–expanded
phase (AE), while increasingz instead is expected to lead to a desorbed–collapsed (DC)
phase. Increasing bothy and z will presumably give an adsorbed–collapsed (AC) phase,
although it seems that such a phase is absent in two dimensions (Foster 1990, Foster
and Yeomans 1991, Fosteret al 1992). The phase boundary separating the desorbed and

† These definitions are slightly different from those in Vrbová and Whittington (1996). However, it is not difficult
to see that only minor modifications of the methods in that paper will lead to identical results.
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Figure 1. The phase diagram for adsorbing and collapsing attached
positive polygons in more than two dimensions.

adsorbed phases of positive polygons will be indicated byy+c (z), and will enjoy some
attention in this paper. In the next section I shall review some of the known results about
this phase diagram. My aim is to add to these; I shall prove that the phase boundary
between the desorbed and adsorbed phases is strictly bigger than 1 for all values of the
contact-fugacityz ∈ (0,∞): y+c (z) > 1 if z ∈ (0,∞). The proof of this result is not
simple, and relies on the ideas developed in the study of adsorbing walks by Hammersley
et al (1982).

2. Collapsing and adsorbing polygons

The existence of limiting free energies in the models of self-interacting positive polygons
interacting with a wall, and of self-interacting polygons interacting with a defect plane
was shown by Vrbov́a and Whittington (1996). These free energies are convex in both
their arguments, and are continuous for 0< y < ∞ and 0< z < ∞, and monotonic non-
decreasing in both arguments. From the convexity it also follows that they are differentiable
almost everywhere. It is also known that

F(y, z) = F+(y, z) = F+(1, z) ∀ 06 y 6 1, ∀ z <∞. (2.1)

Thus,F(y, z) andF+(y, z) are constant functions ofy if 0 6 y 6 1. Evidently,

F(1, z) = F+(1, z) = F(z) (2.2)

is the limiting free energy of a model of self-interacting polygons which has a criticalθ -
point at z = zc. If both of the fugacities are equal to 1, then we obtain the free energy
of uniformly sampled polygons, which equals the logarithm of the growth constant (this is
also called theconnective constantof the lattice):

F(1, 1) = F+(1, 1) = logµd (2.3)

whereµd is the growth constant of polygons in thed-dimensional hypercubic lattice (the
presence of the wall for positive polygons does not change the value ofµd )†.

The adsorption transition manifests itself as non-analyticities inF(y, z) andF+(y, z).
These free energies are non-analytic functions ofy for each finite value ofz (Vrbová and
Whittington 1996, 1998b). As proposed in figure 1, one would expect there to be a critical
curve y+c (z) of non-analyticities in the phase diagram, such thatF+(y, z) is a constant

† Note thatp+n 6 pn. Moreover, by translating a polygon so that it becomes a positive attached polygon, note
thatpn 6 np+n . Thus, limn→∞ 1

n
logp+n = limn→∞ 1

n
logpn = logµd .
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function of y if y < y+c (z), and thatF+(y, z) is not constant ify > y+c (z). We define this
critical value by

y+c (z) = sup
y

{y|F+(y, z) = F(z)}. (2.4)

The critical curveyc(z) in the model of a polygon adsorbing on a defect plane is similarly
defined. An important result is that bothyc(z) andy+c (z) are finite for each finite value of
z. The following bound was shown by Vrbová and Whittington (1996):

16 yc(z) 6 y+c (z) 6 zd−1 µd

µd−1
if z > 1. (2.5)

The same techniques also show that

16 yc(z) 6 y+c (z) 6
µd√
µd−1

if z < 1. (2.6)

These bounds justify the hypothetical shape given to the desorbed–adsorbed phase boundary
in figure 1.

There are also (in a limited sense) some results on the expanded–collapse phase boundary
of θ -transitions. It is not known thatF+(y, z) or F(y, z) are non-analytic functions ofz
for fixed values ofy. On the other hand, if we assume that there is a phase boundary of
θ -transitions separating the DE-phase from the DC-phase atz = z+c (y), thenz+c (y) = z+c is
a constant function ofy, for all y < y+c (z

+
c ) (provided thaty+c (z) is continuous atz = zc);

this follows from equations (2.1) and (2.2). Therefore, if there is a collapse transition in the
model, then the phase boundary separating the DE-phase from the DC-phase is a straight
line (as in figure 1). Little is known about the collapse of adsorbed polygons; the phase
boundary in figure 1 is conjecture (and there is strong evidence that it is not present in the
two-dimensional version of this problem (see Fosteret al 1992)). The presence of the phase
boundary in three dimensions is strongly supported by numerical simulations of collapsing
walks interacting with a wall (Vrbov́a and Whittington 1998a, b).

In this paper we will focus on the use of density functions to prove more results about
figure 1. These are the Legendre transforms of the free energies defined in equations (1.2)
and (1.4). In the case of positive polygons the density functions of visits is defined by

logP+(ε; z) = inf
0<y<∞

{F+(y, z)− ε logy} (2.7)

F+(y, z) = sup
0<ε<1
{logP+(ε; z)+ ε logy}. (2.8)

It can be shown that

P+(ε; z) = lim
n→∞

[∑
c

p+n (bεnc, c)zc
]1/n

(2.9)

see for example Hammersleyet al (1982), Ellis (1985), Madraset al (1988), Vanderzande
(1995). Moreover, since each polygon may have at mostn visits,ε ∈ [0, 1], and logP+(ε; z)
is concave inε. On the other hand, the concatenation of polygons (Vrbová and Whittington
1996) interacting with a surface shows thatP+(ε; z) is convex inz. Therefore,P+(ε; z)
is a continuous function forz ∈ (0,∞) and forε ∈ (0, 1). The density function may have
discontinuities on the boundary of this interval; but such discontinuities do not play a role in
the thermodynamic properties of the model, except at zero or infinite values of the fugacities
(this follows from equation (2.4)). We do not know if there are any such discontinuities,
but we remove any which may exist by redefining the value of the density function there
by the right limit

P+(0; z) = lim
ε↘0
P+(ε; z). (2.10)
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By concavity,P+(ε; z) has a right derivative everywhere in(0, 1), and by defining the value
of the density function atε = 0 as in equation (2.10), there is also a right derivative at
ε = 0. The density function of attached polygons interacting with a defect plane,P(ε; z),
is defined similarly toP+(ε; z), and it has the same properties. There is an important
connection between this right derivative and the critical curvey+c (z).

Lemma 2.1.For everyz ∈ (0,∞),

logy+c (z) = −
[

d+

dε
logP+(ε; z)

]
ε=0

where d+
dε indicates the right derivative toε, and where we evaluate this derivative atε = 0.

Proof. Let Q(ε) = logP+(ε; z) + ε logy. By equation (2.4),F+(y, z) = supε Q(ε).
Moreover,Q(ε) is concave, and its right derivative atε = 0 is[

d+

dε
Q(ε)

]
ε=0

=
[

d+

dε
logP+(ε; z)

]
ε=0

+ logy.

If log y < −[ d+
dε logP+(ε; z)]ε=0, thenQ(ε) has a negative right derivative atε = 0, and

is strictly decreasing in [0, 1] since it is concave. Thus, the supremum in equation (2.4)
is found whenε = 0, in which caseF+(y, z) = logP+(0; z) = F(z) by equations (2.2)
and (2.9). If, on the other hand, logy > −[ d+

dε logP+(ε; z)]ε=0, then the right derivative is
greater than zero atε = 0. Since this derivative exists as a limit, there is anεc > 0 such that
Q(ε) > Q(0) for all ε ∈ [0, εc). Thus, the supremum inQ(ε) is at someε1 > 0, in which
caseF+(y, z) = logP+(ε1; z) + ε1 logy > logP+(0; z) = F(z). Since we can choose
logy arbitrarily close to−[ d+

dε logP+(ε; z)]ε=0, this shows that there is a non-analyticity in

F+(y, z) at−[ d+
dε logP+(ε; z)]ε=0.

Notice thatε is the density of visits in the class of polygons which determines the free
energy, and is therefore also the expected value of the density of visits. Ify < y+c (z), then
the supremum is realized atε = 0, and the expected density of visits is zero. Ify > y+c (z),
then the supremum is found at a positive value ofε, so that the free energy is determined
by a class of polygons which has a positive expected density of visits. �

This lemma has an important corollary.

Corollary 2.2. For everyz ∈ (0,∞),

logy+c (z)− logyc(z) = e−F(z) lim
ε↘0

1

ε
(P(ε; z)− P+(ε; z)).

Proof. Lemma 2.1 is also true if we consideryc(z) andP(ε; z). The result now follows
immediately from lemma 2.1, equation (2.2) and the definition of the right derivative.�

This relation between the locations of the critical curves and the density functions in
these models will be exploited in the next section to prove thaty+c (z) > 1 for all z ∈ (0,∞).
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Figure 2. A grid of non-adjacent edges in two dimensions. All of these edges point in the same
direction, and if the intersection of a family of parallel edges is taken with a translate of this
pattern, then there is an intersection which will contain at least a quarter of all the edges in the
family. In one dimension the pattern reduces to every fourth edge along a line. Ind dimensions
the pattern is found by recursively stacking copies (translated by two steps horizontally) of the
pattern in(d − 1) dimensions.

3. The location ofy+c (z)

In this section I prove thaty+c (z) > 1 for all 0< z <∞. This will be done by examining
the relation between the critical curves and the density functions in corollary 2.2: since
F(z) is finite, we only have to show that limε↘0(P(ε; z)− P+(ε; z))/ε > 0.

Consider any positive polygon withn edges,v visits andc contacts, and with a visit
a to the hyperplanez = 0. Sincea is incident with two edges in the polygon, and there
is only one direction out of the hyperplane,a is incident with an edge with both endpoints
in the hyperplanez = 0. In other words, for every two visits, there is at least one edge of
the polygon in the hyperplanez = 0. Thus, any polygon counted byp+n (v, c) must have
at leastbv/2c edges in the hyperplanez = 0. Let V be the set of edges in the polygon
which are also in the hyperplanez = 0. Then |V| > bv/2c. Each edge inV points in
one of (d − 1) possible directions (since the hyperplanez = 0 is a (d − 1)-dimensional
space), and so there must be at least one direction which contains at least|V|/(d−1) edges.
Without loss of generality let this be thex-direction, and let this set of edges beW. Then
|W| > bbv/2c/(d − 1)c.

The aim is to select a subset of non-adjacent edges from those inW. If the hyperplane
z = 0 is one dimensional, then it can be done as follows. LetR0 be the (infinite) set of
edges{. . . , (−4,−3), (0, 1), (4, 5), . . .} in one dimension. DefineRi by addingi to each
coordinate inR0. Then theRi are disjoint if i = 0, 1, 2, 3 andR0 ∪ R1 ∪ R2 ∪ R3 contains
all the edges in the hyperplanez = 0. Thus, there is ani such thatW ∩Ri contains at least
one out of every four edges inW. These edges are non-adjacent, and we have selected at
leastbbbv/2c/(d − 1)c/4c of them.

In higher dimensions we define theRi recursively. Suppose that we have defined them
in (d − 1) dimensions. LetR(z)i be a copy ofRi inserted in the first(d − 1) coordinates
in a d-dimensional space, and with the last coordinate put equal toz. Then we define
R0(d) = . . . , R(−2)

0 ∪ R(−1)
2 ∪ R(0)0 ∪ R(1)2 ∪ R(2)0 ∪ . . . . In other words, we stack copies of

R0 andR2 in an alternating fashion in thez-direction (all edges point in thex-direction)
to find R0 in d dimensions. The outcome in two dimensions is illustrated in figure 2.Ri
is again defined by addingi to all x-coordinates inR0. ThenR0 ∪ R1 ∪ R2 ∪ R3 contains
all edges in thex-direction in the hyperplanez = 0, and so there is ani such thatRi
contains at least one quarter of the edges inW. In other words, we can pick a set of at
leastbbbv/2c/(d − 1)c/4c non-adjacent edges in the hyperplanez = 0.

Selectm of thebbbv/2c/(d−1)c/4c non-adjacent edges in the hyperplanez = 0. These
edges will be changed to turn the positive polygon into an attached polygon; this will relate
the density functions in corollary 2.2 to one another. Translate each of them edges one
step in the negativez-direction, and add two edges at their endpoints each to reconnect the
polygon. The removal of each edge creates one more contact, but no other contacts are
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Figure 3. We change the positive attached polygon into an attached polygon by translating
edges in the adsorbing plane in the−z-direction. This creates a new contact for each edge
translated, but the number of visits remains unchanged.

formed since none of them edges are adjacent to one another. The outcome is an attached
polygon withn+ 2m edges, andc+m contacts (this is illustrated in figure 3). This shows
that (bbbv/2c/(d − 1)c/4c

m

)
p+n (v, c) 6 pn+2m(v, c +m) (3.1)

since, for each choice of the positive polygon, and for each choice ofm edges, we will
obtain a different attached polygon as the outcome. Multiply equation (3.1) byzc and sum
over c, and note that

∑
c pn+2m(v, c + m)zc 6 z−m

∑
c pn+2m(v, c)z

c. This changes the
inequality to a relation between the partition functions in equations (1.1) and (1.3):(bbbv/2c/(d − 1)c/4c

m

)
Z+n (v; z) 6 z−mZn+2m(v; z). (3.2)

A consequence of this relation is the following theorem.

Theorem 3.1.For all 0< z <∞
(1+ ze−2F(z))ε/(8d−8) P+(ε; z) 6 P

(
ε

1+ 2δ
; z
)

whereδ = ze−2F(z)ε/((8d − 8)(1+ ze−2F(z))).

Proof. Let v = bεnc in equation (3.2), and letm = bδnc, whereδ < ε/(8d − 8). Take the
(1/n)th power of the equation, and letn→∞. Then by equation (2.9)

(ε/(8d − 8))ε/(8d−8)

δδ(ε/(8d − 8)− δ)ε/(8d−8)−δP
+(ε; z) 6 z−δ

[
P
(

ε

1+ 2δ
; z
)]1+2δ

. (A)

Let Zn(v; z) be the partition function of a model of attached polygons withv visits,
and contact fugacityz. Then Zn(z) =

∑
v Zn(v, z) is the partition function of a

model of polygons with contact fugacityz, and it has a limiting free energy given by
F(z) = limn→∞ 1

n
log

∑
v Zn(v; z). On the other hand, letv∗ be that least value ofv which

maximizesZn(v; z). Defineε∗ = lim infn→∞(v∗/n), then the inequalities

Zn(v∗; z) 6
∑
v

Zn(v; z) 6 nZn(v∗; z)

givesP(ε∗; z) = eF(z). But P(ε∗; z) = supε P(ε; z), so that

P(ε; z) 6 eF(z). (B)

Substitution of this, and rearrangements of the factors in equation (A) gives[
(ε/(8d − 8))ε/(8d−8)zδe−2δF(z)

δδ(ε/(8d − 8)− δ)ε/(8d−8)−δ

]
P+(ε; z) 6 P

(
ε

1+ 2δ
; z
)
.
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The factor in square brackets is maximum when

δ = ze−2F(z)ε

(8d − 8)(1+ ze−2F(z))

in which case we obtain

(1+ ze−2F(z))ε/(8d−8)P+(ε; z) 6 P
(

ε

1+ 2δ
; z
)

with δ as given above. �

If we combine theorem 3.1 with corollary 2.2, we find corollary 3.2.

Corollary 3.2.

logy+c (z)− logyc(z) >
1

8d − 8
log(1+ ze−2F(z)).

Proof. From corollary 2.2 and theorem 3.1 we obtain

logy+c (z)− logyc(z) = eF(z) lim
ε↘0

1

ε
(P(ε; z)− P+(ε; z))

> lim
ε↘0

1

ε

(
1− P(

ε
1+2δ ; z)
P(ε; z) (1+ ze−2F(z))−ε/(8d−8)

)
. (C)

Suppose thatP ′(0; z) < 0. If ε is close to zero, then

P(0; z)+ ε(1− η)P ′(0; z) > P(ε; z) > P(0; z)+ ε(1+ η)P ′(0; z)
whereη > 0 can be made arbitrarily small ifε = 0. Let ε < −P(0; z)/(2(1+ η)P ′(0; z)),
then these inequalities can be used to show that

P( ε
1+2δ ; z)
P(ε; z) 6 1− ε

(
2δ

1+ 2δ
+ 2η

) P ′(0; z)
P(0; z) + η1ε

2

where

η1 = (1+ 2(1+ η)2)
(P ′(0; z)
P(0; z)

)2

is a finite and fixed positive number. It is now important to note thatδ 6 ze−2F(z)ε for
fixed values ofz. By using this bound onδ, the above simplifies to

P( ε
1+2δ ; z)
P(ε; z) 6 1− 2ηε

P ′(0; z)
P(0; z) + η2ε

2

whereη2 = η1 − 2ze−2F(z)P ′(0; z)/P(0; z). Substitition of this bound into equation (C)
gives

logy+c (z)− logyc(z) >
1

8d − 8
log(1+ ze−2F(z))+ 2η

P ′(0; z)
P(0; z)

and sinceε = 0, we can takeη arbitrarily small. IfP ′(0, z) = 0 then useP(0, z)− εη 6
P(ε, z) 6 P(0, z)+ εη instead. �

Notice thatZn(z) =
∑

c pn(c)z
c 6 dnpnz

dn if z > 1. ThusF(z) 6 logµd + d logz
if z > 1. Otherwise, ifz < 1, thenZn(z) 6 dnpn and F(z) 6 logµd . Therefore,
e−2F(z) > µ−2

d φ(z), whereφ(z) = min{1, z−2d}. This gives the bound

logy+c (z)− logyc(z) >
1

8d − 8
log(1+ zµ−2

d φ(z)). (3.3)

In three dimensions, and ifz = 1, this gives the approximate lower bound logy+c (z) >
1

8d−8 log(1+ µ−2
d ) ≈ 0.0028.
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4. Excursions in polygons with a density of visits

A subwalk with its first and last vertex in the hyperplanez = 0, and with all its internal
vertices disjoint with this hyperplane, is anexcursion. Maximal subwalks in a polygon
which are contained in the hyperplanez = 0 are calledincursions. An attached polygon is
an alternating sequence of incursions and excursion. If the polygon is completely adsorbed
in the wall (defect plane), then it has no excursions.

In this section we use a construction on excursions in adsorbing walks to produce an
alternative proof thaty+c (z) > 0. The density of visits〈v〉n/n is given by the first derivative
of the free energy with respect to the visit-fugacity; in the desorbed phase we can calculate
directly that

lim
n→∞
〈v〉n
n
= d

dy
F+(y, z) = 0 if y < y+c (z) (4.1)

and since the number of excursions is at most equal to the number of visits, the density
of excursions is also zero. We can also see this by noting that the density function
P+(ε; z)+ ε logy attains its supremum atε = 0 if y < y+c (z) (see the proof of lemma 2.1),
so that the density of visits is zero in the infiniten limit. On the other hand, ify > y+c (z),
then there is a non-zero density of visits, and perhaps a non-zero density of excursions. We
will examine this in the following paragraphs.

Let p+n (v, c, k) be the number of attached, positive polygons withn edges,v visits,
c contacts andk excursions. We can define the partition function of a model of positive
polygons withbεnc visits andbδnc excursions by

Z+n (bεnc; z; bδnc) =
∑
c

p+n (bεnc, c, bδnc)zc. (4.2)

The density function of visits and excursions of this model is defined by

P+(ε; z; δ) = lim sup
n→∞

[Z+n (bεnc; z; bδnc)]1/n (4.3)

we only define this as a lim sup, but note that the existence of the limit can be shown. Since
p+n (v, c) =

∑
k p
+
n (v, c, k), we necessarily have that

P+(ε; z) = sup
δ

P+(ε; z; δ). (4.4)

It can be checked that the domain of(ε, δ) is as follows

ε ∈ [0, 1
2] 0 6 δ 6 min{ε/2, 1

2 − ε} in d = 2

ε ∈ [0, 1] 06 δ 6 min{ε/2, (1− ε)/2} in d > 3.
(4.5)

Let ρ be a polygon counted byp+n (v, c, k). Since there arev visits andk excursions inρ,
there are alsov − k edges ofρ in the planez = 0. Choosem non-adjacent edges from
this set; this can be done in at least

(b(v−k)/2c
m

)
different ways. Fix these edges in thez = 0

hyperplane, and translate the rest of the polygon one step in thez-direction to obtain the
polygonρ ′. This is illustrated in figure 4.

No contacts are broken by this construction, but each of them chosen edges produces
a contact, and each new vertex may have as many asd new contacts; thus,ρ ′ may have
at leastc, and at mostc + (2d + 1)m contacts. In addition, there are 2m visits andm
excursions inρ ′. Thus(b(v − k)/2c

m

)
p+n (v, c, k) 6

(2d+1)m∑
i=0

p+n+2m(2m, c + i, m). (4.6)
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Figure 4. By fixing edges in thez = 0 hyperplane and translating the rest of the polygon in the
z-direction, we can create excursions.

Multiply this equation byzc and sum overc. This gives a relation between partition
functions: (b(v − k)/2c

m

)
Z+n (v; z; k) 6

[ (2d+1)m∑
i=0

z−i
]
Z+n+2m(2m; z;m). (4.7)

Equation (4.7) has the following consequence.

Theorem 4.1.For everyε in the interval(0, 1] there exists aδ∗ > 0 such that

(1+ [φ(z)e2F(z)]−1)(ε−γ )/2P+(ε; z; γ ) 6 P+(2δ∗; z; δ∗)
where 0< z <∞, 2δ∗ < ε − γ , andφ(z) = max{1, z−(2d+1)}.

Proof. Put v = bεnc, k = bγ nc, m = bδnc in equation (4.7). Take the (1/n)th power, and
take the lim sup asn→∞ of the left-hand side of the equation. This gives

((ε − γ )/2)(ε−γ )/2
δδ((ε − γ )/2− δ)(ε−γ )/2−δP

+(ε; z; γ ) 6 [φ(z)]δ
[
P+

(
2δ

1+ 2δ
; z; δ

1+ 2δ

)]1+2δ

whereφ(z) = 1 if z > 1 andφ(z) = z−(2d+1) if z < 1. By equation (4.4) and theorem (3.1),
equation (B), we note thatP+(2δ; z; δ) 6 P+(2δ; z) 6 eF(z). Thus

((ε − γ )/2)(ε−γ )/2
δδ((ε − γ )/2− δ)(ε−γ )/2−δ [φ(z)e2F(z)]−δP+(ε; z; γ ) 6 P+

(
2δ

1+ 2δ
; z; δ

1+ 2δ

)
.

The left-hand side is a maximum if

δ∗ = ε − γ
2(1+ φ(z)e2F(z))

in which case we have

(1+ [φ(z)e2F(z)]−1)(ε−γ )/2P+(ε; z; γ ) 6 P+(2δ∗; z; δ∗)
whereδ∗ = δ/(1+ 2δ) and whereδ is given above. This completes the proof. �

Notice thatδ∗ 6 ε/2 in the proof above, so that the optimal value ofδ in theorem 4.1 is
in the interval specified by equation (4.5). The implication of theorem 4.1 is that any set of
polygons withbεnc visits and no excursions is exponentially rare in comparison with a set
of polygons withb2δ∗nc visits andbδ∗nc excursions (and where 2δ∗ = ε/(1+ φ(z)e2F(z))).

From equation (2.4) we see that the free energy is defined by

F+(y, z) = sup
ε,δ

log(P+(ε; z; δ)yε) = log(P+(ε∗; z; δ∗)yε∗). (4.8)



Collapsing and adsorbing polygons 8305

If y < y+c (z), then we know from the proof of lemma 2.1 thatε∗ = δ∗ = 0 in equation (4.8).
We now use theorem 4.1 to give an alternative proof thaty+c (z) > 1: Suppose thaty > y+c (z)
so thatε∗ > 0 in equation (4.8). Then by theorem 4.1 we note

F+(y, z) = log(P+(ε∗; z; δ∗)yε∗) 6 log

(
P+(2δ†; z; δ†)y2δ†

[
yε
∗−2δ†

1

])
(4.9)

where we used theorem 4.1 and where 2δ† = (ε∗ − δ∗)/1 < ε∗ − δ∗; and where
1 = (1+ [φ(z)e2F(z)]−1)(ε

∗−δ∗)/2 by theorem 4.1. This is a contradiction if

logy <
log1

ε∗ − 2δ∗
(4.10)

and if we suppose thatδ∗ = αε∗, where 06 α 6 1
2, then simplification of equation (4.10)

gives

logy <
(1− α)(1+ φ(z)eF(z)) log(1+ [φ(z)eF(z)]−1)

α + 2φ(z)eF(z)
. (4.11)

This bound is positive for any value ofα in [0, 1
2]. In other words, ify satisfies the bound

in equation (4.11), then equation (4.9) is a contradiction (by the definition ofF+(y, z)),
unlessε∗ = 0. Thus, if y satisfies the bound in equation (4.11), then we must be in the
desorbed phase, and soy+c (z) > 1.

5. Conclusions

In this paper I revisited a model of adsorbing and collapsing polygons introduced by Vrbová
and Whittington (1996). This model is a generalized version of the model in Hammersley
et al (1982). In this paper it has been shown that the adsorption transition of positive
attached polygons can only occur when there is a strictly attractive interaction between the
polygons and the wall (that is, if the visit-fugacityy is in [1, y+c (z)), then we are in the
desorbed phase, andy+c (z) > 1 for all 0< z <∞). A construction for adsorbing polygons
(without a contact-fugacity) in the paper by Hammersleyet al (1982) shows that there is
a density of excursions in the adsorbed phase. In our phase diagram this corresponds to
a density of excursions fory > y+c (1) and z = 1. The construction in that paper will not
generalize to the model of interacting polygons in this paper (too many nearest-neighbour
contacts are lost)†. Thus, it remains to show that there is a density of excursions in the
adsorbed phases for values ofz 6= 1. In addition, an easy extension of the construction will
show that a density of the excursions will be tight knots (Janse van Rensburget al 1992);
this result was also shown by Vanderzande (1995).

Monte Carlo simulations by Vrbová and Whittington (1998a, b) support the hypothetical
phase diagram in figure 1. There are also some outstanding issues. Most importantly, what
can be said about the AC-phase? Is it present in the two-dimensional version of this model?
Numerical work suggests that it is present in three dimensions; but this raises a second issue:
are there two triple points in the phase diagram (figure 1), or is there only one quadruple
point?

† This construction will work for related models, such as for example a model of polygons with a curvature
fugacity.
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